Call Multiple Data Sources
This tutorial shows you how make multiple API calls from your smart contract to a Decentralized Oracle Network. After OCR completes off-chain computation and aggregation, the DON returns the asset price to your smart contract. This example returns the BTC/USD
price.
This guide assumes that you know how to build HTTP requests and how to use secrets. Read the API query parameters and API use secrets guides before you follow the example in this document. To build a decentralized asset price, send a request to the DON to fetch the price from many different API providers. Then, calculate the median price. The API providers in this example are:
Before you begin
-
Complete the setup steps in the Getting Started guide: The Getting Started Guide shows you how to set up your environment with the necessary tools for these tutorials. You can re-use the same consumer contract for each of these tutorials.
-
Make sure your subscription has enough LINK to pay for your requests. Read Get Subscription details to learn how to check your subscription balance. If your subscription runs out of LINK, follow the Fund a Subscription guide.
-
Check out the correct branch before you try this tutorial: Each tutorial is stored in a separate branch of the Chainlink Functions Starter Kit repository.
git checkout tutorial-6
-
Get a free API key from CoinMarketCap.
-
Open your
.env
file. -
Add a line to the
.env
file with theCOINMARKETCAP_API_KEY=
variable and set it to your API key. For example:COINMARKETCAP_API_KEY="78143127-fe7e-d5fe-878f-143notarealkey"
-
Save your
.env
file.
Tutorial
This tutorial is configured to get the median BTC/USD
price from multiple data sources. For a detailed explanation of the code example, read the Explanation section.
- Open
Functions-request-config.js
. Note theargs
value is["1", "bitcoin", "btc-bitcoin"]
. These arguments are BTC IDs at CoinMarketCap, CoinGecko, and Coinpaprika. You can adaptargs
to fetch other asset prices. See the API docs for CoinMarketCap, CoinGecko, and CoinPaprika for details. For more information about the request, read the request config section. - Open
Functions-request-source.js
to analyze the JavaScript source code. Read the source code explanation for a more detailed explanation of the request source file.
Simulation
The Chainlink Functions Hardhat Starter Kit includes a simulator to test your Functions code on your local machine. The functions-simulate
command executes your code in a local runtime environment and simulates an end-to-end fulfillment. This helps you to fix issues before you submit functions to the Decentralized Oracle Network.
Run the functions-simulate
task to run the source code locally and make sure Functions-request-config.js
and Functions-request-source.js
are correctly written:
npx hardhat functions-simulate
Example:
$ npx hardhat functions-simulate
secp256k1 unavailable, reverting to browser version
__Compiling Contracts__
Nothing to compile
Duplicate definition of Transfer (Transfer(address,address,uint256,bytes), Transfer(address,address,uint256))
Executing JavaScript request source code locally...
__Console log messages from sandboxed code__
Median Bitcoin price: $22975.59
__Output from sandboxed source code__
Output represented as a hex string: 0x0000000000000000000000000000000000000000000000000000000000230ed7
Decoded as a uint256: 2297559
__Simulated On-Chain Response__
Response returned to client contract represented as a hex string: 0x0000000000000000000000000000000000000000000000000000000000230ed7
Decoded as a uint256: 2297559
Estimated transmission cost: 0.000045536612837717 LINK (This will vary based on gas price)
Base fee: 0.0 LINK
Total estimated cost: 0.000045536612837717 LINK
Reading the output of the example above, you can note that the BTC/USD
median price is: 22975.59 USD. Because Solidity does not support decimals, we move the decimal point so that the value looks like the integer 2297559
before returning the bytes
encoded value 0x0000000000000000000000000000000000000000000000000000000000230ed7
in the callback. Read the source code explanation for a more detailed explanation.
Request
Send a request to the Decentralized Oracle Network to fetch the asset price. Run the functions-request
task with the subid
(subscription ID) and contract
parameters. This task passes the functions JavaScript source code and any arguments and secrets when calling the executeRequest
function in your deployed FunctionsConsumer
contract. Read the functionsConsumer section for a more detailed explanation about the consumer contract.
npx hardhat functions-request --subid REPLACE_SUBSCRIPTION_ID --contract REPLACE_CONSUMER_CONTRACT_ADDRESS --network REPLACE_NETWORK
Example:
$ npx hardhat functions-request --subid 6 --contract 0xa9b286E892d579dc727c79D3be9b01949796240A --network mumbai
secp256k1 unavailable, reverting to browser version
Simulating Functions request locally...
__Console log messages from sandboxed code__
Median Bitcoin price: $22981.11
__Output from sandboxed source code__
Output represented as a hex string: 0x00000000000000000000000000000000000000000000000000000000002310ff
Decoded as a uint256: 2298111
If all 100000 callback gas is used, this request is estimated to cost 0.000054961325570353 LINK
Continue? (y) Yes / (n) No
y
Requesting new data for FunctionsConsumer contract 0xa9b286E892d579dc727c79D3be9b01949796240A on network mumbai
Waiting 2 blocks for transaction 0x9fa43ee9e8d4ba61ef87bc164b88eb6a9a055140453c27d2b15b42bd4b91a56a to be confirmed...
Request 0x68014e0a20daafe82cc65797222943e0bb5ff3123ff80d7612523945f722c9fb initiated
Waiting for fulfillment...
Request 0x68014e0a20daafe82cc65797222943e0bb5ff3123ff80d7612523945f722c9fb fulfilled!
Response returned to client contract represented as a hex string: 0x00000000000000000000000000000000000000000000000000000000002310ff
Decoded as a uint256: 2298111
Transmission cost: 0.000119462925581673 LINK
Base fee: 0.0 LINK
Total cost: 0.000119462925581673 LINK
The output of the example above gives you the following information:
- The
executeRequest
function was successfully called in theFunctionsConsumer
contract. The transaction in this example is 0x9fa43ee9e8d4ba61ef87bc164b88eb6a9a055140453c27d2b15b42bd4b91a56a. - The request ID is
0x68014e0a20daafe82cc65797222943e0bb5ff3123ff80d7612523945f722c9fb
. - The DON successfully fulfilled your request. The total cost was:
0.000119462925581673 LINK
. - The consumer contract received a response in
bytes
with a value of0x00000000000000000000000000000000000000000000000000000000002310ff
. Decoding the response off-chain touint256
gives you a result of2298111
.
At any time, you can run the functions-read
task with the contract
parameter to read the latest received response.
npx hardhat functions-read --contract REPLACE_CONSUMER_CONTRACT_ADDRESS --network REPLACE_NETWORK
Example:
$ npx hardhat functions-read --contract 0xa9b286E892d579dc727c79D3be9b01949796240A --network mumbai
secp256k1 unavailable, reverting to browser version
Reading data from Functions client contract 0xa9b286E892d579dc727c79D3be9b01949796240A on network mumbai
On-chain response represented as a hex string: 0x00000000000000000000000000000000000000000000000000000000002310ff
Decoded as a uint256: 2298111
Explanation
FunctionsConsumer.sol
-
To write a Chainlink Functions consumer contract, your contract must import FunctionsClient.sol. You can read the API reference: FunctionsClient.
This contract is not available in an NPM package, so you must download and import it from within your project.
import "./dev/functions/FunctionsClient.sol";
-
Use the Functions.sol library to get all the functions needed for building a Chainlink Functions request. You can read the API reference: Functions.
using Functions for Functions.Request;
-
The latest request id, latest received response, and latest received error (if any) are defined as state variables. Note
latestResponse
andlatestError
are encoded as dynamically sized byte arraybytes
, so you will still need to decode them to read the response or error:bytes32 public latestRequestId; bytes public latestResponse; bytes public latestError;
-
We define the
OCRResponse
event that your smart contract will emit during the callbackevent OCRResponse(bytes32 indexed requestId, bytes result, bytes err);
-
Pass the oracle address for your network when you deploy the contract:
constructor(address oracle) FunctionsClient(oracle)
-
At any time, you can change the oracle address by calling the
updateOracleAddress
function. -
The two remaining functions are:
-
executeRequest
for sending a request. It receives the JavaScript source code, encrypted secrets, list of arguments to pass to the source code, subscription id, and callback gas limit as parameters. Then:-
It uses the
Functions
library to initialize the request and add any passed encrypted secrets or arguments. You can read the API Reference for Initializing a request, adding secrets, and adding arguments.Functions.Request memory req; req.initializeRequest(Functions.Location.Inline, Functions.CodeLanguage.JavaScript, source); if (secrets.length > 0) { if (secretsLocation == Functions.Location.Inline) { req.addInlineSecrets(secrets); } else { req.addRemoteSecrets(secrets); } } if (args.length > 0) req.addArgs(args);
-
It sends the request to the oracle by calling the
FunctionsClient
sendRequest
function. You can read the API reference for sending a request. Finally, it stores the request id inlatestRequestId
.bytes32 assignedReqID = sendRequest(req, subscriptionId, gasLimit); latestRequestId = assignedReqID;
-
-
fulfillRequest
to be invoked during the callback. This function is defined inFunctionsClient
asvirtual
(readfulfillRequest
API reference). So, your smart contract must override the function to implement the callback. The implementation of the callback is straightforward: the contract stores the latest response and error inlatestResponse
andlatestError
before emitting theOCRResponse
event.latestResponse = response; latestError = err; emit OCRResponse(requestId, response, err);
-
Functions-request-config.js
Read the Request Configuration section for a detailed description of each setting. In this example, the settings are the following:
codeLocation: Location.Inline
: The JavaScript code is provided within the request.secretsLocation: Location.Inline
: The secrets are provided within the request.codeLanguage: CodeLanguage.JavaScript
: The source code is developed in the JavaScript language.source: fs.readFileSync("./Functions-request-source.js").toString()
: The source code must be a script object. This example usesfs.readFileSync
to readFunctions-request-source.js
and callstoString()
to get the content as astring
object.secrets: { apiKey: process.env.COINMARKETCAP_API_KEY }
: JavaScript object which contains secret values. Before making the request, these secrets are encrypted using the DON public key. Theprocess.env.COINMARKETCAP_API_KEY
setting meansCOINMARKETCAP_API_KEY
is fetched from the environment variables. Make sure to setCOINMARKETCAP_API_KEY
in your.env
file. Note:secrets
is limited to a key-value map that can only contain strings. It cannot include any other types or nested parameters.walletPrivateKey: process.env["PRIVATE_KEY"]
: This is your EVM account private key. It is used to generate a signature for the encrypted secrets such that an unauthorized third party cannot reuse them.args: ["1", "bitcoin", "btc-bitcoin"]
: These arguments are passed to the source code. This example requests theBTC/USD
price. These arguments are BTC IDs at CoinMarketCap, CoinGecko, and Coinpaprika. You can adaptargs
to fetch other asset prices. See the API docs for CoinMarketCap, CoinGecko, and CoinPaprika for details.expectedReturnType: ReturnType.uint256
: The response received by the DON is encoded inbytes
. Because the asset price isuint256
, you must defineReturnType.uint256
to inform users how to decode the response received by the DON.
Functions-request-source.js
To check the expected API responses, run these commands in your terminal:
-
CoinMarketCap:
curl -X 'GET' \ 'https://pro-api.coinmarketcap.com/v1/cryptocurrency/quotes/latest?id=1&convert=USD' \ -H 'accept: application/json' \ -H 'X-CMC_PRO_API_KEY: REPLACE_WITH_YOUR_API_KEY'
-
CoinGecko:
curl -X 'GET' \ 'https://api.coingecko.com/api/v3/simple/price?vs_currencies=USD&ids=bitcoin' \ -H 'accept: application/json'
-
Coinpaprika:
curl -X 'GET' \ 'https://api.coinpaprika.com/v1/tickers/btc-bitcoin' \ -H 'accept: application/json'
The price is located at:
- CoinMarketCap:
data,1,quote,USD,price
- CoinGecko:
bitcoin,usd
- Coinpaprika:
quotes,USD,price
Read the JavaScript code section for a detailed explanation of how to write a compatible JavaScript source code. This JavaScript source code uses Functions.makeHttpRequest to make HTTP requests.
The code is self-explanatory and has comments to help you understand all the steps. The main steps are:
- Construct the HTTP objects
coinMarketCapRequest
,coinGeckoRequest
, andcoinPaprikaRequest
usingFunctions.makeHttpRequest
. The values forcoinMarketCapCoinId
,coinGeckoCoinId
, andcoinPaprikaCoinId
are fetched from theargs
. See the request config section for details. - Make the HTTP calls.
- Read the asset price from each response.
- Calculate the median of all the prices.
- Return the result as a buffer using the
Functions.encodeUint256
helper function. Because solidity doesn’t support decimals, multiply the result by100
and round the result to the nearest integer. Note: Read this article if you are new to Javascript Buffers and want to understand why they are important.